Imputation of missing data with class imbalance using conditional generative adversarial networks
نویسندگان
چکیده
Missing data is a common problem faced with real-world datasets. Imputation widely used technique to estimate the missing data. State-of-the-art imputation approaches model distribution of observed approximate values. Such an approach usually models single for entire dataset, which overlooks class-specific characteristics Class-specific are especially useful when there class imbalance. We propose new method imputing based on its by adapting popular Conditional Generative Adversarial Networks (CGAN). Our Network (CGAIN) imputes using distributions, can produce best estimates tested our baseline datasets and achieved superior performance compared state-of-the-art approaches.
منابع مشابه
Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملContext-conditional Generative Adversarial Networks
We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...
متن کاملBidirectional Conditional Generative Adversarial Networks
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (x) conditioned on both latent variables (z) and known auxiliary information (c). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles z and c in the generation process and provides an encoder that learns inverse mappings from x to both z and c, trained jointly with the...
متن کاملClass-Splitting Generative Adversarial Networks
Generative Adversarial Networks (GANs) produce systematically better quality samples when class label information is provided., i.e. in the conditional GAN setup. This is still observed for the recently proposed Wasserstein GAN formulation which stabilized adversarial training and allows considering high capacity network architectures such as ResNet. In this work we show how to boost conditiona...
متن کاملPredicting Rapid Fire Growth (Flashover) Using Conditional Generative Adversarial Networks
A flashover occurs when a fire spreads very rapidly through crevices due to intense heat. Flashovers present one of the most frightening and challenging fire phenomena to those who regularly encounter them: firefighters. Firefighters’ safety and lives often depend on their ability to predict flashovers before they occur. Typical pre-flashover fire characteristics include dark smoke, high heat, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.04.010